North East Regional Conference on Earthquake and Landslide Mitigation-Building Disaster Resilience in North East India

Seismic Performance Evaluation of Un-bonded Fibre Reinforced Elastomeric Isolator (U-FREI)

Anjan Dutta

DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI

Other Members of the Research Group

1. Prof. S.K. Deb, IITG

2. Dr. Ngo Van Thuyet, Univ. of Hanoi (Former, R/S)

3. Dr. Animesh Das, BHEL, New Delhi (Former R/S)

4. Mr. A. Hazarika, Atkins, B'luru (Former PG Student)

5. Mr. K. Reddy, Former Undergraduate student

Supporting Staffs

1. Dr. Arun C. Borsaikia, SeniorTechnical Officer

2. Mr. Biswajit Debnath, Junior Tech. Supdt.

Industry Partner

Limitations of Conventional Design

- Conventional fixed base structures can not be realistically designed to remain elastic in large seismic events (more so in regions of high seismicity)
- Common practice is to design them so that they experience damage in a controlled manner and can undergo large inelastic displacements

Seismic Base Isolation

The objective of seismic isolation systems is to decouple the building structure from the damaging components of the earthquake input motion, i.e., to prevent the superstructure of the building from absorbing the earthquake energy.

The entire superstructure must be supported on discrete isolators whose dynamic characteristics are chosen to uncouple the ground motion

Suitability of Base Isolation Systems

Earthquake protection of structures using base isolation technique is generally suitable if following conditions are fulfilled:

- The subsoil does not produce a predominance of long period ground motion
- The structure is fairly squat with sufficiently high column load
- The site permits large horizontal displacements at the base
- Lateral loads due to wind are less than approximately 10% of the weight of the structure

Concept of Base Isolation

Significantly Increase the Period of the Structure and the Damping so that the Response is Significantly Reduced

Designs of Seismic Isolator

Natural frequency (f_n) of the base isolated model structure is given by:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{K_H}{m_t}}$$

Horizontal stiffness of bearing:

$$K_h = \frac{K_H}{\text{Number of bearings}}$$

For (SREI), the horizontal stiffness is given by:

$$K_h = \frac{GA}{t_r}$$

Idealized force-displacement hysteretic behavior of isolation system

Conventional Laminated Rubber Seismic Isolation Bearings

Estimation of Displacement [ASCE / SEI: 7-10]

 Minimum lateral displacement in each main horizontal direction

Maximum displacement in most critical direction

Constructed base isolated buildings

Sponsor of the project BRNS, DAE, GOI

Non-Isolated

Isolated

Details of peak acceleration response reduction relative to PGA in base-isolated building (X-direction is longer direction of the building)

Event Date	PGA	A(g)	Percentage Reduction		
	X-direction	Y-direction	X-direction	Y-direction	
10-09-2006	0.0023	0.0030	52	76	
06-11-2006	0.0021	0.0030	20	53	
10-11-2006	0.0037	0.0048	49	73	

Nath, R.J., **Deb, S.K.** and Dutta, A. (2013), "Base isolated RC building – performance evaluation and numerical model updating using recorded earthquake response", *Int. Journal of Earthquakes and Structures* (Techno Press, Korea), Vol.4 (5), PP. 471-487.

Fiber Reinforced Elastomeric Isolator (FREI)

Advantages:

- Use of fiber material reduces the weight
- Sand blasting, acid cleaning coating not required
- Manufacturing of long rectangular strip

Geometry of model FREI

Description		Square
Width (2a) of isolator	I	100 mm
Thickness of fiber layer (t _f)	I	0.55 mm
Number of layer	I	18
Thickness of single rubber layer (t_e)	=	5.0 mm
Number of rubber layer	=	19
Total Height (h)	=	104.90 mm

FE ANALYSIS OF FREI

- Using ANSYS v.14.0
- Element type:
 - Elastomer: SOLID185; Fibre: SOLID46;
 - Contact element: CONTA173; TARGE170;

• Material model:

• Elastomer: hyper-elastic and visco-elastic behaviour.

Hyper-elastic behaviour: Ogden 3-terms model

$$\mu_1 = 1.89 \text{x} 10^6 \text{ (N/m}^2); \mu_2 = 3600 \text{ (N/m}^2);$$

 $\mu_3 = -30000 \text{ (N/m}^2);$

$$\alpha_1 = 1.3; \ \alpha_2 = 5; \ \alpha_3 = -2;$$

Visco-elastic behaviour: Prony Visco-elastic Shear Response

$$a_1 = 0.3333; t_1 = 0.04; a_2 = 0.3333; t_2 = 100.$$

Meshing

Imposed horizontal displacement history

Stress Contour

✤ Square isolator with 0⁰ loading direction

Unbonded square isolator

Bonded square isolator

Contour of normal stress S_{33} (N/m²) in rubber layer of isolator at horizontal displacement 60mm and 0⁰ loading direction (Positive value indicate tension)

Hysteretic behaviour of square bonded isolator with 45^o loading direction

	Square unbor	ded 45°	Square bonded 45°			
Displaceme	Effective Horizontal Dampi		Effective Horizontal	Damping		
nt (mm)	Stiffness (K_{eff}^h)	(β) (%)	Stiffness (K_{eff}^h)	(β) (%)		
	(kN/m)		(kN/m)			
10	104.8	12.1	104.0	12.2		
20	89.1	12.4	94.3	12.2		
30	74.7	13.0	87.2	12.3		
40	63.7	13.3	79.6	12.4		
50	55.4	13.8	75.4	12.6		
60	48.2	14.3	70.6	13.0		

Experimental Set-up for Lateral Force-Displacement Behaviour

Comparison of Numerical & Experimental Result

Horizontal Displacement (mm)

Shear force vs. horizontal displacement at 50mm displacement

Horizontal Displacement (mm)

Shear force vs. horizontal displacement at 60mm displacement

Das, A., Dutta, A. and **Deb, S.K.** (2015), "Performance of fiber-reinforced elastomeric base isolators under cyclic excitation", Journal of *Structural Control and Health Monitoring,* (Wiley Inter-Science), Vol. 22(2), pp.197-220.

Shake Table Testing of Model Building Supported on FREI

Das, A., **Deb, S.K.** and Dutta, A. (2016), "Shake table testing of unreinforced brick masonry building test model isolated by U-FREI", *Earthquake Engineering and Structural Dynamics* (Wiley Inter-Science), Vol. 45, pp. 263-272.

Acceleration time histories of four different earthquakes

Displaced shape of isolator during shake table test for Park-Field input earthquake

(a) Park-field (for 100% acceleration amplitude of earthquakes along X-axis).

(b) Park-field (for 70% acceleration amplitude of earthquakes along 45⁰ to X-axis.)

Acceleration response at shake table level and base level subjected to four earthquakes 0.8 0.8 Shake Table Shake Table -Base of bldg -Base of bldg Pro- Acceleration (g) Pro- Acceleration (g) $\Lambda \Lambda \Lambda \Lambda \Lambda$ 10 15 20 -0.8 -0.8 Time (sec) Time (sec) (a) Koyna (1967) (b) Parkfield (1966) 0.4 0.8 Shake Table Shake Table -Base of bldg -Base of bldg 0.2 Acceleration (g) 0.5 0 Pro- Acceleration (g) Pro- Acceleration (g) -0.4 -0.8 Time (sec) Time (sec)

(d) Victoria (1980)

(c) El Centro (1940)

Comparison of acceleration responses at base level, first floor and roof level subjected to four earthquakes

Displacement at base level and first floor level subjected to four earthquakes

Peak ad model s	cceleration subjected t	<mark>and displ</mark> o four ear	<mark>acement</mark> thquakes	at differei along X-a	nt levels of ixis	F	
					Pe	ak	
	Pe	ak Accele	Displacement (mm)				
Farthquake							
Lartiquare	At Shake	At Base	At First	At Roof	At Base	At First	
	Table		Floor	Level	level	Floor	
Koyna (1967)	0.632	0.0873	0.0700	0.0867	6.326	7.240	
Parkfield	0.476	0.2145	0.2081	0.2463	36.199	39.920	
(1966)							
El Centro	0.319	0.1524	0.1601	0.1686	17.789	19.409	
(1940)							
Mexico (1980)	0.615	0.1230	0.1310	0.1459	19.452	21.251	
36	1		1	1	1		

EXPERIMENTAL STUDY ON HORIZONTAL FORCE-DISPLACEMENT BEHAVIOUR OF PROTOTYPE U-FREIS

Details of prototype FREIs: (support of METCO Pvt. Ltd., Kolkata, India)

Description	Isolator A1	Isolator B1	Isolator B2	
Size of specimen, mm	250x250x100	250x250x100	310x310x100	
Number of isolators, N	2 - $A1_{(a,b)}$	4 - $B1_{(a,b,c,d)}$	2 – $B2_{(a,b)}$	
Number of elastomeric layer, n_e	18	18	18	
Thickness of single elastomeric layer, t_e	, 5 mm	5 mm	5 mm	
Total height of elastomer, t_r	90 mm	90 mm	90 mm	
Number of fibre layer, n_f	17	17	17	
Thickness of single fibre layer, t_f	0.55 mm	0.55 mm	0.55 mm	
Shape factor, S	12.5	12.5	15.5	
Aspect ratio	2.50	2.50	3.10	
Shear modulus of elastomer, G	0.78 MPa	0.90 MPa	0.90 MPa	
Elastic modulus of carbon fibre laminat	e 40 GPa	40 GPa	40 GPa	20
Poisson's ratio of carbon fibre laminate	0.20	0.20	0.20	

Evaluation of lateral load-displacement behaviour of prototype U-FREIs

Experimental set-up

Horizontal displacement history

All isolators are subjected to a constant vertical pressure of 5.6 MPa and cyclic horizontal displacement (f= 0.025 Hz) up to 0.89 t_r

EXPERIMENTAL STUDY ON HORIZONTAL-DISPLACEMENT BEHAVIOUR OF PROTOTYPE U-FREIs

• Deformed shapes:

Experimental Deformed shapes of U-FREI at 80 mm amplitude of horizontal displacement

EXPERIMENTAL STUDY ON HORIZONTAL-DISPLACEMENT BEHAVIOUR OF PROTOTYPE U-FREIs

- Mechanical characteristic properties:
 - The effective horizontal stiffness: [*Kelly and Takhirov*, 2001]
 - The equivalent viscous damping:

 $\frac{F_{\text{max}}}{F_{\text{max}}}$ $K^h_{\it eff}$ $u_{\rm max}$

Amplitudo		A1 _(a, b)		B1 _(a, b)		<i>B1_(c, d)</i>		B2 _(a, b)	
(mm)	u/t_r	$K_{e\!f\!f}^{\ h}$	β	$K_{e\!f\!f}^{\ \ h}$	β	$K_{e\!f\!f}^{\ h}$	β	$K_{e\!f\!f}^{\ \ h}$	β
(1111)		(kN/m)	(%)	(kN/m)	(%)	(kN/m)	(%)	(kN/m)	(%)
20	0.22	464.26	5.18	507.26	5.00	547.00	4.79	814.54	5.82
40	0.44	403.41	6.94	410.21	9.67	436.10	9.57	708.04	6.89
60	0.67	324.22	11.15	339.01	12.02	343.86	13.12	573.36	10.14
80	0.89	282.60	11.83	318.68	10.02	310.52	11.51	497.48	11.84

EXPERIMENTAL STUDY ON HORIZONTAL FORCE-DISPLACEMENT BEHAVIOUR OF PROTOTYPE U-FREIS

Effect of loading direction on horizontal response of square U-FREIs:

- Most previous studies for square U-FREIs were investigated under cyclic horizontal displacement in 0/90° and 45° directions. Angle of incidence of earthquake to a structure may be from any directions.
- However, **no experimental study** on effect of loading directions on horizontal response of square U-FREIs was performed.

Specimens undergoing tests under horizontal displacement in different directions (0°, 15°, 30° and 45°)

EXPERIMENTAL STUDY ON HORIZONTAL FORCE-DISPLACEMENT BEHAVIOUR OF PROTOTYPE U-FREIS

- Experimental results:
 - Deformed shapes:

As the loading direction changes from 0° to 45°, the **area of the isolator** in contact with the support surfaces **increases**. This results in **an increase in effective horizontal stiffness**.

Deformed shapes of U-FREI type A1 corresponding to 0°, 15°, 30° and 45° loading directions at 80mm amplitude of horizontal displacement

FINITE ELEMENT SIMULATION OF FREI

• Hysteresis loops:

(c) Isolator B2

Comparison of hysteresis loops of different types of U-FREI as obtained from FE analysis and experimental results

Mechanical Properties of Prototype FREIs

Mechanical properties of U-FREI and B-FREI type B1

	Experimental results				FEA results			
Amplitude	$B1_{(a)}$	ı,b)	$B1_{(c)}$	c,d)	Un-bonded		Bonded	
(mm)	$K_{e\!f\!f}^{ h}$	β	$K_{e\!f\!f}^{\ \ h}$	β	$K_{e\!f\!f}^{\ \ h}$	β	$K_{e\!f\!f}^{ h}$	β
	(kN/m)	(%)	(kN/m)	(%)	(kN/m)	(%)	(kN/m)	(%)
20.0	507.26	5.00	547.00	4.79	515.87	7.58	528.12	7.51
40.0	410.21	9.67	436.10	9.57	426.93	9.60	486.13	9.03
60.0	339.01	12.02	343.86	13.12	357.01	12.05	452.65	10.52
80.0	318.68	10.02	310.52	11.51	301.67	13.46	425.54	11.10
90.0	-	-	-	-	281.34	14.11	414.90	11.42
112.5	-	-	-	-	247.09	14.58	393.10	11.91
135.0	-	-	-	-	222.03	15.42	379.09	12.27

Horizontal load – displacement relationships

Horizontal Displacement [mm]

(b) Isolator B1

horizontal displacement of 135 mm (positive value indicates tension)

AN ANALYTICAL APPROACH FOR PREDICTING THE **HORIZONTAL STIFFNESS OF U-FREIs**

Deformed configuration of a U-FREI

Effective plan area:

 $A_{eff} = a\left(a - d\right)$

According to Nezhad [2014], *d* is evaluated as $d = \frac{25}{16} \alpha h$

 α is geometrical parameter which relates *d* and curved length, *s*, at a given displacement, u.

Relation between u, s and α as proposed by Nezhad [2014] is expressed as

$$u = \frac{25}{64}h\left[2\alpha\sqrt{1+4\alpha^2} + \ln\left(2\alpha+\sqrt{1+4\alpha^2}\right)\right]$$

Ngo, T.V., Dutta, A. and Deb, S.K. (2017), "Evaluation of horizontal stiffness of fibre-reinforced elastomeric isolators", *Earthquake Engineering and Structural Dynamics* (Wiley Inter-Science), Vol. 46, pp. 1747-1767

View of UFREI

VULNERABILITY ASSESSMENT OF A LOW-RISE MASONRY BUILDING SUPPORTED ON U-FREIS

Numerical modelling of masonry building:

- 3D models of fixed-base and base-isolated buildings are simulated by SAP2000.
- Masonry wall: Nonlinear layered shell element

Isolator: as rubber isolator in link/support type element using bilinear

hysteresis loop

Identification of Damage States (DS):

- Thresholds based on inter-storey drift from Calvi [1999] are employed to define damage states for the masonry building.
- For base-isolated building: a damage state is added to evaluate the damage of U-FREIs in base isolation system (DS5). The damage state limit of horizontal displacement of U-FREIs is considered at hardening behaviour with u_{h} = 155 mm (i.e. 1.70 t_{r}).

Comparison of fragility curves of FB and BI building

Ngo, T.V., **Deb, S.K.** and Dutta, A. (2017), "Mitigation of seismic vulnerability of a prototype low-rise masonry building using U-FREIs", accepted for publication in *Journal of Performance of Constructed Facilities*, ASCE

IITG CAMPUS: SPRING 2017

Thank you for your kind attention